5 research outputs found

    hasil-peer-review-sunardi-0521057401-C.2.2

    Get PDF
    Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role

    Non-Newtonian fluid flow through three-dimensional disordered porous media

    Full text link
    We investigate the flow of various non-Newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of ({\it i}) the disordered geometry of the pore space, ({\it ii}) the fluid rheological properties, and ({\it iii}) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions. This anomalous condition of ``enhanced transport'' represents a novel feature for flow in porous materials.Comment: 5 pages, 5 figures. This article appears also in Physical Review Letters 103 194502 (2009

    Determination of the Effective Viscosity of Non-newtonian Fluids Flowing Through Porous Media

    Get PDF
    When non-Newtonian fluids flow through porous media, the topology of the pore space leads to a broad range of flow velocities and shear rates. Consequently, the local viscosity of the fluid also varies in space with a non-linear dependence on the Darcy velocity. Therefore, an effective viscosity μeff is usually used to describe the flow at the Darcy scale. For most non-Newtonian flows the rheology of the fluid can be described by a (non linear) function of the shear rate. Current approaches estimate the effective viscosity by first calculating an effective shear rate mainly by adopting a power-law model for the rheology and including an empirical correction factor. In a second step this averaged shear rate is used together with the real rheology of the fluid to calculate μeff. In this work, we derive a semi-analytical expression for the local viscosity profile using a Carreau type fluid, which is a more broadly applicable model than the power-law model. By solving the flow equations in a circular cross section of a capillary we are able to calculate the average viscous resistance 〈μ〉 directly as a spatial average of the local viscosity. This approach circumvents the use of classical capillary bundle models and allows to upscale the viscosity distribution in a pore with a mean pore size to the Darcy scale. Different from commonly used capillary bundle models, the presented approach does neither require tortuosity nor permeability as input parameters. Consequently, our model only uses the characteristic length scale of the porous media and does not require empirical coefficients. The comparison of the proposed model with flow cell experiments conducted in a packed bed of monodisperse spherical beads shows, that our approach performs well by only using the physical rheology of the fluid, the porosity and the estimated mean pore size, without the need to determine an effective shear rate. The good agreement of our model with flow experiments and existing models suggests that the mean viscosity 〈μ〉 is a good estimate for the effective Darcy viscosity μeff providing physical insight into upscaling of non-Newtonian flows in porous media
    corecore